

TABLE I
DISCONTINUITY CAPACITANCE OF OPEN CIRCUITED 50 Ω COAXIAL LINE

Number of Nodes	Total Capacitance*		Capacitance/Length of Uniform Line	Calculated† R		Value of R (at dc) from Somlo ^[4]
	Electric Conductor Termination A	Magnetic Conductor Termination B		A	B	
2400 (10 \times 10 \times 24)	22.94559	22.93412	1.889035	0.6181	0.6169	0.6034
16967 (19 \times 19 \times 47)	45.63527	45.61212	1.884934	0.6100	0.6088	0.6034

* The capacitance figures represent C/ϵ for a quarter section of the line.

† R is defined by Somlo as $R = l/(r_b - r_a)$ where r_a, r_b are defined in Fig. 3. l = distance of electrical open circuit from physical open circuit.

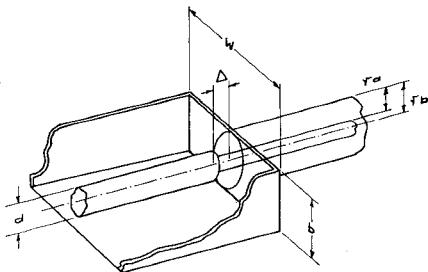


Fig. 3. Transition between 50 Ω coaxial and slab line sections. $r_b/r_a = 2.3022$, $d/b = 0.545$, $w/b = 2.0$.

RESULTS

The program was checked by calculating the discontinuity capacitance associated with an open-circuited coaxial line; accurate results for this configuration have recently become available.^[4] The discontinuity capacitance was obtained by the method discussed by Green.^[1] Since a numerical process such as this one requires a closed boundary, the infinite extent of coaxial line beyond the open circuit cannot be simulated exactly; calculations were performed using in turn an electric and a magnetic conductor at a distance about equal to the outer conductor beyond the open circuit. The results are summarized in Table I

for two sets of calculations using different numbers of meshes.

As a practical application of the program, a transition from coaxial line to slab line was designed using an offset compensation, as shown in Fig. 3. The offset Δ was adjusted until the additional inductance introduced thereby compensated the discontinuity capacitance to give a dc image impedance of 50 ohms. The optimum offset occurs for $\Delta/b = 0.47$.

CONCLUSIONS

The practicability of using a numerical solution to Laplace's equation in three dimensions to design TEM mode components has been demonstrated. Further developments in the computer program used will permit more general boundaries and allow for dielectric interfaces. As techniques are refined, greater accuracy in the results can be expected.

ACKNOWLEDGMENT

The author wishes to thank C. T. Carson for much of the basic development and programming of this work and for his continuing interest in it.

D. H. SINNOTT
Weapons Research Establishment
Adelaide, South Australia 5001

REFERENCES

- [1] H. E. Green, "The numerical solution of some important transmission-line problems," *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-13, pp. 676-692, September 1965.
- [2] C. T. Carson, "The numerical solution of TEM mode transmission lines with curved boundaries," *IEEE Trans. Microwave Theory and Techniques (Correspondence)*, vol. MTT-15, pp. 269-270, April 1967.
- [3] D. M. Young, "Iterative methods for solving partial difference equations of elliptic type," *Trans. Am. Math. Soc.*, vol. 76, p. 92, 1954.
- [4] P. I. Somlo, "The discontinuity capacitance and the effective position of a shielded open circuit in coaxial line," *Proc. IRE (Australia)*, vol. 28, pp. 7-9, January 1967.

Comments on "A Nonreciprocal Circular Polarizer"

In a recent paper,¹ the author described two models of a nonreciprocal circular polarizer. The second model was a two-stage device in which the second stage provided a refinement of the approximate circular polarization produced by the first stage. The device used for this purpose consisted of a circular waveguide with a ferrite rod along its axis, so dimensioned that one sense of circular polarization could propagate but not the other. It has been called to the author's attention that a theoretical basis for such a device was provided in a series of papers by Waldron.² Furthermore, a patent³ embodying the application of this principle was obtained by him.

MAX L. REUSS, JR.
US Naval Research Lab.
Washington, D. C. 20390

Manuscript received October 11, 1967.

¹ M. L. Reuss, Jr., *IEEE Trans. Microwave Theory and Techniques*, vol. MTT-15, pp. 37-41, January 1967.

² R. A. Waldron, "Electromagnetic wave propagation in cylindrical waveguides containing gyromagnetic media," *J. Brit. IRE*, vol. 18, pp. 597-612, 677-690, 733-746, 1958.

³ —, British Patent 850 054, September 28, 1960.

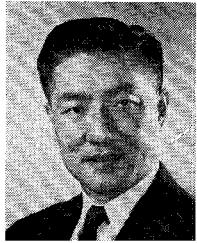
Contributors

Keith S. Champlin (S'55-M'59) was born in Minneapolis, Minn., on August 20, 1930. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from the University of Minnesota, in 1954, 1955, and 1958, respectively.

After serving in the U. S. Army Signal Corps in 1951 and 1952, he was briefly associated with the Physics Department of the University of Minnesota and with Reming-

ton Rand Univac. Both positions dealt with applications of radio telemetry to high-altitude research. As a graduate student, he was engaged in research on noise in semiconductors, first as Research Assistant and later as Research Fellow. His thesis work was in the field of fluctuations in $p-n$ junction devices. He is currently a Professor of Electrical Engineering at the University of Minnesota and is directing research on interactions of microwaves and ultramicrowaves with semiconductors. During three months of 1963, he served as Exchange Professor at the Laboratoire de Physique, Ecole Normale Supérieure, Université de Paris, France.

Dr. Champlin is recipient of the 1963 Distinguished Teaching Award, the first award granted by the Institute of Technology. He is a member of Tau Beta Pi, Eta Kappa Nu, Gamma Alpha, and Sigma Xi.


Pier Francesco Checacci was born in Florence, Italy, on December 4, 1927. In 1947 he graduated from the Technical Institute of Florence, Florence, Italy. In 1964 he received the Ph.D. degree in electromagnetic waves from the University of Florence.

Since 1948 he has been a researcher at the Centro Microonde, Consiglio Nazionale delle Ricerche Florence, where he has been chiefly involved with microwave optics, antennas, ionospheric physics, and space electronics.

Dr. Checcacci is a member of the Italian Physical Society, the Third Italian URSI Commission, and COSPAR W.G. No. 1 on Radio Tracking and Telemetry and Dynamics.

❖

David K. Cheng (S'44-A'48-M'48-SM'50-F'60) was born in Kiangsu, China, on January 10, 1918. He received the B.S.E.E. degree from the National Chiao-Tung University, Shanghai, China, in 1938, and the S.M. and Sc.D. degrees from Harvard University, Cambridge, Mass., in 1944 and 1946, respectively. While at Harvard he was a Charles Storrow Scholar and a Gordon McKay Scholar.

From 1938 to 1943 he was an Engineer with the Central Radio Corporation of the National Resources Commission of China. In 1946 he joined the Communications Laboratory of the USAF Cambridge Field Station, Cambridge, Mass., as an Electronics Engineer and later as a Project Engineer. Since 1948 he has been on the faculty of Syracuse University, Syracuse, N. Y., where he is a Professor of Electrical Engineering. He has been a Project Director for various antenna and electromagnetics research projects contracted through the Syracuse University Research Institute since 1949. He spent the year 1960 to 1961 in England and West Germany as a John Simon Guggenheim Fellow. Since 1961 he has been a Consulting Editor for Electrical Engineering books published by the Addison-Wesley Publishing Co.

Dr. Cheng is a Fellow of the American Association for the Advancement of Science, and a member of the New York Academy of Sciences, the American Association of University Professors, the American Society for Engineering Education, Sigma Xi, Eta Kappa Nu, Phi Tau Phi, and Commission VI of the U. S. National Committee of URSI.

❖

Seymour B. Cohn (S'41-A'44-M'46-SM'51-F'59) was born in Stamford, Conn., on October 21, 1920. He received the B.E. degree in electrical engineering from Yale University, New Haven, Conn., in 1942, the M.S. degree in communication engineering and the Ph.D. degree in engineering sciences and applied physics from Harvard University, Cambridge, Mass., in 1946 and 1948, respectively.

From 1942 to 1945 he was employed as a

Special Research Associate by the Radio Research Laboratory of Harvard University, and represented the Laboratory as a Technical Observer with the U. S. Air Force. He worked at Sperry Gyroscope Company, Great Neck, N. Y.,

from 1948 to 1953, where he held the position of Research Engineer in the Microwave Instruments and Components Department. From 1953 to 1960, he was with the Stanford Research Institute, Menlo Park, Calif., as Head of the Microwave Group, and after 1957, as Manager of the Electromagnetics Laboratory. In July 1960 he joined Rantec Corp., Calabasas, Calif., as Vice President and Technical Director. Since October 1967 Dr. Cohn has been an independent consultant for Rantec and other clients.

Dr. Cohn is a member of Tau Beta Pi and Sigma Xi. He was Chairman of the G-MTT Administrative Committee, and was recipient of the G-MTT 1964 Microwave Prize. He is also an Associate Editor of the *Microwave Journal*.

❖

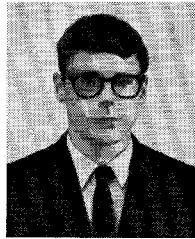
Anna Consortini was born in Florence, Italy, on December 17, 1934. She was graduated with a major in physics from the University of Florence, Florence, Italy, in 1959.

Since 1959 she has been with the Centro Microonde, Consiglio Nazionale delle Ricerche, Florence, where her work has been concerned with space researches (meteors and artificial satellites) and antenna and laser studies. In 1963 she became an Assistant of Optics at the University of Florence.

Miss Consortini is a member of the Italian Physical Society and the Third Italian URSI Commission.

❖

James C. Daly (M'65) was born in Hartford, Conn., on June 10, 1938. He received the B.S. degree in electrical engineering from the University of Connecticut, Storrs, Conn., in 1960, and the M.E.E. and Ph.D. degrees both in electrical


engineering, from Rensselaer Polytechnic Institute, Troy, N. Y., in 1962 and 1967, respectively.

From 1962 to 1966 he was a Member of the Faculty of the Electrical Engineering Department at Rensselaer Polytechnic Institute where he taught and carried out research on bulk semiconductor microwave interactions. During this time he worked summers on solid-state circuits at General Electric Co., Schenectady, N. Y.; Duffers Associates,

Troy, N. Y.; and Norden Division of United Aircraft, So. Norwalk, Conn. Since 1966 he has been a Member of the Technical Staff of the Crawford Hill Lab., Bell Telephone Laboratories, Inc., Holmdel, N. J., where he is currently working on optical wave guidance.

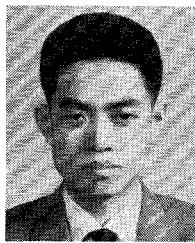
Dr. Daly is a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi.

❖

Gary H. Glover (S'66) was born in Minneapolis, Minn., on August 4, 1942. He received the B.S. and M.S. degrees in electrical engineering from the University of Minnesota, Minneapolis, in 1964 and 1966, respectively. He presently holds a National Science Foundation Traineeship and is engaged in research towards the Ph.D. degree at the University of Minnesota. His research topic concerns the interaction of ultramicrowaves with solid-state magnetoplasmas.

Mr. Glover is a member of Eta Kappa Nu.

❖



John D. Holm (S'66) was born in St. Paul, Minn., on February 21, 1940. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from the University of Minnesota, Minneapolis, in 1962, 1963, and 1967, respectively.

From 1962 to 1963 he was a Research Assistant at the University of Minnesota where his research involved the measurement of magnetic properties of garnets. From 1963 to 1966 he was a NASA trainee and from 1966 to 1967 a Research Fellow at the University of Minnesota where his research topic was semiconductor transport properties at microwave frequencies. He is presently employed by the 3M Company, St. Paul, Minn., in the advanced research group of the Magnetic Products Division.

Dr. Holm is a member of Tau Beta Pi and Eta Kappa Nu.

❖

Jin-Au Kong (S'65) was born in Kiangsu, China, on December 27, 1942. He received the B.S.E.E. degree from the National Taiwan University, Taipei, Taiwan, in 1962, and the M.S. degree from the Institute of Electronics, National Chiao-Tung University, Hsinchu, Taiwan, in 1965.

From 1962 to 1963, he was a Reserve Officer in the Chinese Air Force Electronics Factory. Since 1965 he has been a Research Assistant in the Department of Electrical En-

gineering, Syracuse University, Syracuse, N. Y., working toward the Ph.D. degree. His primary fields of interest are classical electrodynamics and wave propagations in moving media.

Mr. Kong is a member of the Phi Tau Phi.

Ralph Levy (SM'64) was born in London, England, on April 12, 1932. He received the M.A. degree in physics from St. Catharine's College, Cambridge University, England, in 1953, and the Ph.D. degree in electrical engineering from the University of London, England, in 1966.

From 1953 to 1959, he was a member of the Scientific Staff at the Applied Electronics Laboratories of the General Electric Company, Stanmore, Middlesex, England, where he worked on guided missiles, radar, countermeasures systems, and on microwave components. In 1959 he joined Mullard Research Laboratories, Redhill, Surrey, England, where he directed a section engaged in studies on broadband receiver design, microwave components, and network synthesis. In 1964 he was appointed to the post of Lecturer in the Department of Electrical and Electronic Engineering at the University of Leeds, England, where he carried out research in the fields of microwave network synthesis and broadband microwave components, and also held positions as an Industrial Consultant. Since July, 1967, he has been associated with Microwave Development Laboratories, Needham, Mass.

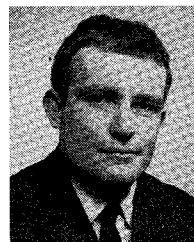
Dr. Levy is a member of the Institution of Electrical Engineers (London).

Larry F. Lind (S'64) was born in Minneapolis, Minn., on January 31, 1941. He received the B.S. degree in electrical engineering in 1962 from Virginia Polytechnic Institute, Blacksburg, Va. He received the M.S. degree in electrical engineering from the University of

New Mexico, Albuquerque, N. M., in 1964.

He joined Sandia Corporation, Albuquerque, N. M., in 1962 and received the M.S. degree under the sponsorship of their Technical Development Program. While

at Sandia Corporation, he was engaged in sampled-data theory design and techniques. He was granted leave of absence from Sandia Corporation in 1965 to enter the Ph.D. program at Leeds University, Leeds, England, where he is presently engaged in the theory and development of branch-guide directional couplers.


Mr. Lind is a member of Eta Kappa Nu, Tau Beta Pi, and Phi Kappa Phi.

Nicholas A. Patrin was born in Tientsin, China on May 13, 1940. He received the B.S. and M.S.E.E. degrees in electrical engineering from the University of Minnesota, Minneapolis, in 1962 and 1964, respectively. Currently, he is a can-

didate for the Ph.D. degree in electrical engineering at the University of Minnesota where he is a Research Fellow engaged in research on the low-temperature microwave properties of semiconductors.

Mr. Patrin is a member of Eta Kappa Nu and Tau Beta Pi.

J. David Rhodes was born in Doncaster, Yorkshire, England, on October 9, 1943. He received the B.Sc. and Ph.D. degrees from the University of Leeds, Leeds, England, in 1964 and 1966, respectively.

From 1964 until

1966 he was a Research Assistant in the Electrical and Electronic Engineering Department of the University of Leeds and is currently a Research Fellow in the same department.

❖

Sean O. Scanlan (M'62-SM'66) was born in Dublin, Ireland, on September 20, 1937. He received the B.E. and M.E. degrees from the National University of Ireland, University College, Dublin, in 1951 and 1964, respectively, and the Ph.D. degree from the University of Leeds, Leeds, England, in 1966.

From 1959 to 1963 he was employed at Mullard Research Laboratories, Surrey, England, where he carried out research in the areas of network theory and microwave diode devices. Since 1963 he has been a Lecturer in the Department of Electrical and Electronic Engineering, University of Leeds, with research interests in the same areas.

Dr. Scanlan is a member of the Institution of Electrical Engineers (London) and an associate fellow of the Institute of Mathematics and its Applications (U. K.).

❖

Annamaria Scheggi was born in Florence, Italy, on September 30, 1929. In 1953 she was graduated from the University of Florence, Florence, Italy, with a major in mathematics and physics.

Since 1953 she has been with the Centro Microonde, Consiglio Nazionale delle Ricerche, Florence, where her work has been primarily concerned with microwave optics, antenna, and laser research.

Mrs. Scheggi is a member of the Sixth Italian URSI Commission and the Italian Physical Society. She is the Italian National Contact for COSPAR Information Bulletins.